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Review Article 
Graph Theoretic Techniques in the Theory 
of Classical Fluids 

I. R.  McDONALD 
Department of Chemistry. Royal Holloway College. Egham, Surrey. 

and 

S .  P. O‘GORMAN 
Department of Mathematics, Polytechnic of North London. London N7 8DB 

(Received January 31, 1978) 

The mathematical ideas underlying the graph theoretic approach to the equilibrium theory of 
classical fluids are treated from an elementary point of view. The emphasis is placed on modern 
developments based on the techniques of functional differentiation and topological reduction. 
The aim is to provide the non-expert reader with a mathematical guide to recent papers which 
employ graph theoretic methods, particularly to those dealing with perturbation theory. 

1 INTRODUCTION 

It has long been well-known that graph theoretic methods can profitably be 
used in the analysis of many important problems in statistical mechanics, 
the classic work along these lines being that of Mayer’ and Yvon.’ In recent 
years, however, there has been a renewed and growing interest in graphical 
methods, arising in large part from the recognition of the value of perturba- 
tion theory in treating the equilibrium properties of fluids. Not all the original 
work on perturbation theory made use of graphical techniques, but in nearly 
all cases the results, and those of other theoretical approaches, can be 
expressed very concisely in graphical terms, thereby allowing a unified 
discussion of a wide variety of theoretical methods. 

This more recent work has rested heavily on a number of fundamental 
papers, notably those of Morita and H i r ~ i k e , ~  de Dominicis4 and Stell,5 in 
which systematic use is made of two techniques which are relatively un- 
familiar to many with less than specialist knowledge of the field, those of 
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58 I .  R. McDONALD A N D  S .  P. O’GORMAN 

functional differentiation and topological reduction. Most quantities in 
statistical mechanics are functionals of one sort or another. For example, the 
radial distribution function g ( r )  in a monatomic liquid is a functional of the 
pair potential dr), since the value of g(r) for any particular value of r is 
determined by the value of u(r) for all r .  We are then led naturally to the con- 
cept of functional differentiation if we wish to calculate the variation in g ( r )  
resulting from a small variation in dr), a situation with obvious relevance to 
perturbation calculations. Topological reduction is simply a general name 
for a process of resuming a series of graphs in order to simplify the graphical 
prescription for a quantity of interest. The key step in any such operation is 
invariably a classification of the relevant graphs on the basis of their topo- 
logical structure. 

The present article is devoted to mathematical aspects of the principles and 
application of these methods. Our aim is to leave the non-specialist reader 
in a position to tackle the much more technical accounts to be found in the 
original papers, particularly those on perturbation and in recent 
review articles such as those of Wortis” and Ste11,16B’7 and at the same time 
to fill in the missing mathematical steps in the many excellent reviews of 
applications which already e ~ i s t . ’ ~ - ~ ~  The main effort is directed towards 
giving simplified but rigorous proofs of the fundamental lemmas and to 
discussing how and when the lemmas can be applied. We hope thereby to 
provide a mathematical guide to the now extensive literature on the subject. 
To allow a coherent presentation we phrase our arguments in large part in 
the language of the theory of permutation groups, but the results we borrow 
are all very elementary and can be found in standard undergraduate texts 
such as that of 

Section 2 is largely concerned with basic definitions. Unfortunately the 
subject is one which is bedevilled by differences in terminology, not only 
amongst different authors but also between different papers by the same 
author. We have tried not to add too much to this confusion, adopting for 
the most part the terms used by Morita and Hiroike3 and by Stell.’ We also 
discuss (in Section 2.5) a number of problems which arise in the process of 
topological reduction, but which have largely been ignored in the literature. 
Section 3 is concerned with the development of a number of simple group 
theoretic arguments; these are used in Section 4 and Section 5, where the 
method of functional differentiation is formulated in terms of graph theoretic 
operations. Section 6 is devoted to the proof and use of lemmas on topological 
reduction. Applications are discussed at various points in the text, but though 
they are all of some practical importance they are chosen primarily to 
illustrate how themathematical difficulties which arise are typically overcome. 
We therefore limit ourselves to the simple case of a one-component system 
of monatomic particles interacting via a pair potential 41, 2). (For con- 
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GRAPH THEORY TECHNIQUES FOR FLUIDS 59 

venience we shall frequently use the notation i = ri.) The starting point in the 
discussion of the thermodynamic and structural properties of such a system 
is the grand partition function, which we write in the form 

N ='= 2 ' O 1  7/-.-~l...dNz*(l)...z*(N) n [l +f(i,j)] (1.1) 
N = O  N .  i < j  

is the Mayer f-function and z*(i)  = z exp[ - B$(i)], where z is the activity 
and 4(i) is the potential at a point idue to an external field. The generalization 
to inhomogeneous systems is retained because it creates few complications 
and means the result can be applied, for example, in the discussion of surface 
phenomena. 

2 SOME GRAPH THEORETIC CONCEPTS 

2.1 

Graphs are used in classical statistical mechanics as a shorthand means of 
representing definite integrals in which the variables of integration are the 
coordinates 1,2, 3, . . . , specifying the position of particles within the system 
of interest. Consider, for example, the function 

Elementary definitions: free and labelled graphs 

F(r) = 1. . . /dl . . . d6r(r)r(l)r(2)y(3>r(4)r(5)y(6)B(r, 1Mr, 2) 

x B(1,2)B(19 3)B(2, 3)8(3,4)B(3, W ( 3 ,  6)t3(l9 2,3) (2.1) 
where y(r), B(r, r') and t3(r, r', r") are respectively, one, two and three point 
functions of the particle coordinates and the integration extends over the 
whole volume of the system. The function F(r) can be represented in the 
graphical form shown in Figure 1, the algebraic interpretation of any such 
graph being made with the help of the well-known rules which we recall 

2 
FlGURE 1 The graphical representation of the function F(r), Eq. (2.1). 
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60 1. R. McDONALD AND S. P. O'GORMAN 

below. Mathematically the right-hand side of (2.1) and the graph pictured in 
Figure 1 are to be regarded as equivalent representations of the same object. 

Figure 1 is an example of a labelled graph, which in the general case is made 
up of a certain number of circles, each labelled with the particle coordinate 
to which it corresponds and with each of which is associated a one-point 
function ; bonds linking pairs of circles and associated with two-point 
functions; and (s - 1)-dimensional faces (s > 2) linking groups of s circles 
and associated with s-point functions. A linear graph is a graph composed 
only of circles and bonds. A bond may be regarded as a one-dimensional 
face, but the special importance of two-point functions makes it more 
convenient to treat bonds as separate entities. Bonds and faces are said to be 
incident with the circles which they link. Circles are classified either as root 
points or as field points. Root points are represented by white circles and 
correspond to coordinates which are not integrated over. Field points cor- 
respond to variables of integration and in the most common case, when the 
associated one-point functions are all the same, are represented by black 
circles. Other choices for the one-point functions correspond to different 
colourings of the field points. We shall return to the question of coloured 
graphs in Section 6, but elsewhere it will be assumed that the field points are 
all black. If the functions associated with the bonds (or faces) are not all 
identical, the bonds (or faces) are said to be of different species. 

A graph containing white circles is called a rooted graph. An integral 
represented by a rooted graph is both a function of the coordinates of the 
white circles and a functional of the functions associated with the circles, 
bonds and faces. In the conventional terminology the example shown in 
Figure 1 is a singly-rooted graph composed of one white y-circle, six black 
y-circles, eight €3-bonds and one <,-face. If the function associated with a 
circle is identically unity, the circle in question is called a black or white 
1-circle. 

We shall use the term simple graph to denote a graph in which no set of 
circles is linked by more than one bond or face, and no bond or face is inci- 
dent more than once with the same circle. This definition excludes graphs 
which are either bond-composite or face-composite, or which contain loops. 

The field points of a graph correspond to dummy variables of integration. 
Relabelling the field points may therefore change the appearance of the 
integrand but the value of the integral will be unchanged. To that extent the 
way in which the field points are labelled is without significance and the 
labels may conveniently be omitted altogether. A graph in which the field 
points are unlabelled is called afree graph. The one-to-one correspondence 
with a certain definite integral remains. However, whereas the oalue of a 
labelled graph is simply the integral which the graph represents, the definition 
of the value of a free graph brings in a combinatorial factor related to its 
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GRAPH THEORY TECHNIQUES FOR FLUIDS 61 

topological structure. This apparently small distinction is of great importance, 
the power of the graphical method in specific cases being largely determined 
by the ease with which expressions involving free graphs can be manipulated; 
we shall return to this question (in Section 2.3) after first discussing what is 
meant by the connectivity of a graph. 

2.2 Connectivity 

Two circles in a graph are said to be adjacent if they are linked by a bond or 
share a common face. A sequence of adjacent circles forms a path. Then a 
graph is connected if there exists at least one path between each pair of circles. 
If a graph is disconnected, it is composed of two or more connected com- 
ponents, and if two circles lie in different components there is no path between 
them. 

Removal of a circle from a connected graph may cause the graph to become 
disconnected. In that case the circle in question is called a connecting circle. 
Removal of a circle means, pictorially, that the circle and all bonds and faces 
incident with it are erased. For example, when the arrowed circle in Figure 
2(a) is removed, the graph. becomes disconnected. By extension, a connecting 
subset is a group of circles such that upon its removal the graph becomes 
disconnected. The order of a connecting subset is the number of circles of 
which it is composed. 

In the case of rooted graphs there are two particularly important classes 
of connecting circles. Removal of an articulation circle causes the graph to 
separate into two or more pieces, at least one of which contains no white 
circle. Thus the connecting circle shown in Figure 2(a) is in fact an articulation 
circle. In the same way, articulation subsets are a special case of connecting 
subsets. The most important such subset is an articulation pair, of which an 
example is shown in Figure 2(b). Any articulation circle in a graph with more 

FIGURE 2 The effect of removing (a) an articulation circle and (b) an articulation pair, 
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62 I .  R. M c D O N A L D  A N D  S. P. O’GORMAN 

than three circles forms an articulation pair with at least one other circle in 
that graph. A graph which is free of articulation circles is called 1-irreducible; 
a graph which is free of articulation pairs is called 2-irreducible. Thus 2- 
irreducibility implies 1-irreducibility, but not vice versa. The multiplicity of an 
articulation circle is the number of pieces into which the graph separates when 
the circle is removed. By convention a circle which is not an articulation 
circle is allotted a multiplicity of one. 

A nodal circle is a connecting circle in a graph containing two or more 
white circles such that all paths between two particular white circles pass 
through it. On removal of the nodal circle the graph separates into two or 
more pieces, the two white circles in question appearing in different pieces. 
Obviously if two white circles are linked by a bond there can be no associated 
nodal circle. An articulation circle may simultaneously be a nodal circle if it 
is of multiplicity three or more. 

A graph may be either simply or multiply connected. Since the question of 
the multiple connectivity of graphs with faces raises certain difficulties, we 
shall confine our definitions to the case of linear graphs. Two paths between 
a given pair of circles are said to be independent if they have no intermediate 
circle in common. If there exist (at least) n independent paths between each 
pair of circles the graph is said to be (at least) n-tuply connected. Thus in 
Figure 3, graph (a) is simply connected, graph (b) is triply connected and 
graph (c) is a disconnected graph with two components, each of which is 
doubly connected. According to a well-known result is graph theory known 
as Menger’s theorem,28 a graph lacking a connecting subset of order smaller 
than s must be at least s-tuply connected. In particular, a graph without 
connecting circles must be at least doubly connected. This is less straight- 
forward to prove than might appear at first sight, though the converse 
statement is easily verified. 

In passing it is worth pointing out that many of the most important graph 
theoretic manipulations in the theory of fluids are concerned with the 
progressive elimination of classes of weakly connected graphs. 

2.3 

Let r be a free graph with m black circles and let f be an arbitrarily labelled 
version. The value of the labelled graph is left unaltered by application of any 
element of the group consisting of the m! possible permutations of the la.bels 
on the black circles. since the integrals associated with different labellings 
differ, at most, only in the variables of integration. However, there is a sub- 
group of permutations which also leave the integrand unchanged or, alter- 
natively, give rise to graphs characterized by the same set of connections. 
Two such graphs are said to be topologically equivalent and the subgroup of 

Topological equivalence and the value of a free graph 
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GRAPH THEORY TECHNIQUES FOR FLUIDS 6 3  

FIGURE 3 Graphs with different degrees of connectivity (see text) 

permutations which transform an arbitrarily labelled graph into another 
which is topologically equivalent is called the graph group of r. The sym- 
metry number of a simple graph is equal to the order of the graph group, but 
for composite graphs the symmetry number is obtained by multiplying the 
order of the graph group by a factor n !  for every pair of circles linked by n 
bonds of a given species and every set of s circles linked by n (s - 1)-dimen- 
sional faces of a given species. 
Two graphs which are labelled versions of the same free graph but are 

characterized by different sets of connections are called topologically in- 
equivalent. Since the graph group is a subgroup of the symmetric group of 
degree m, it follows from Lagrange’s theorem on the order ofa group and its 
subgroups that 

m!  = {the order of the graph group} x {the number of 
ways of labelling r which yield topologically 
inequivalent graphs} (2.2) 

Returning to the example shown in Figure 1, we see that topologically 
equivalent graphs are obtained by combining any interchange of labels 1 
and 2 with any permutation of 4 5  and 6. Thus the graph group is of order 12 
and from (2.2) it follows that a total of 60 topologically inequivalent graphs 
can be generated by permuting the labels on the black circles. It is also con- 
venient to introduce the notion of complete inequivalence: two labelled graphs 
are said to be completely inequivalent if they are labelled versions of two 
different or topologically distinct free graphs. In such a case there is no 
permutation of the labels which will transform one graph into the other. 
Note that we use the words “equivalent” and “inequivalent” to describe 
labelled graphs, reserving the term “distinct” for the characterization of 
free graphs. Where we use the word “graph” without further qualification, 
we have in mind the case of free graphs, though in much of the discussion the 
distinction between free and labelled graphs is irrelevant. 

We are now in a position to give the definition of the value of a free graph. 
Adopting the convention that when either the symbol representing a graph 
or the word “graph ”appears in an equation, the result must be interpreted in 
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64 I .  R. McDONALD A N D  S. P. O'GORMAN 

terms of the value of that graph, the value of a free graph r with rn black 
circles is given by 

= (l/m!){the sum of all topologically inequivalent 
labelled versions of r} 

= m-I (2.3) 

where f is any labelled version of r and I I- 1 is its symmetry number. Thus in 
the example already introduced, (Eq. (2.1) and Figure l), we see that T = F(r) 
and r = &F(r). 

We now introduce the concept of a star product.' Let r, be a connected 
graph with n,  white 1-circles and let Tz be a connected and possibly identical 
graph with n2 white 1-circles. Now consider the n3 white circles with labels 
common to both graphs. Then the star product rl * T2 is the graph obtained 
by linking together rl and T2 in such a way that the white circles carrying 
identical labels coincide. The star product contains n, + n2 - n 3  white 
circles and rl and r2 are said to be connected in parallel at the n3 white 
circles. If the white circles of rl and r2 have no label in common, or if one 
or both is without any white circles, rl * r2 is a disconnected graph having 
rl and r2 as its components. The definitions are easily extended. For 
example, if two graphs are connected in parallel at white y-circles, the 
corresponding circles in the star product become y2-circles; if there is a bond 
(or face) linking two (or more) of the white circles, the two (or more) cor- 
responding circles in the star product will be linked by a double bond (or 
face), and so on. It is important to note that in general the symmetry number 
of a star product is not the product of the symmetry numbers of the con- 
stituent graphs. Some simple examples of the formation of star products are 
shown in Figure 4. 

Star irreducible graphs are connected graphs which cannot be expressed 
as the star product of two connected graphs except when one of the two is a 
graph consisting of a single white circle. Other graphs are called reducible. 
The class of star irreducible graphs excludes all graphs containing white 
connecting subsets, and all graphs in which two white circles are linked by 
a bond or a set of s white circles is linked by an (s - 1)dimensional face, with 
the exception of graphs consisting only of white circles connected by a single 
bond or face. On the other hand it obviously includes all connected graphs 
consisting only of black circles and bonds. Some examples of star irreducible 
and reducible graphs are shown in Figure 5. It is convenient to exclude 
graphs consisting of a single white circle from the class of star irreducible 
graphs. In that case a product of two star irreducible graphs can be uniquely 
decomposed into its constituent parts. This is not true of reducible graphs, as 
can be seen from the example in Figure 4(b). However, any reducible graph 
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(bl 

FIGURE 4 The formation of star products from (a) graphs which are all star irreducible and 
(b) graphs of which some are reducible. 

can be uniquely written as a product offactors which are star irreducible. If 
two graphs have no factors in common, the symmetry number (and hence the 
value) of their star product is equal to the product of their symmetry num- 
bers (or values). It should be clear that star irreducible graphs play a role 
analagous to that of prime numbers in ordinary number theory. 

2.4 

Given the definition of a star irreducible graph, we can proceed immediately 
to the statement of an important result which we shall refer to as the “ex- 
ponentiation” theorem. 

Lemma I:  the exponentiation theorem 

(a) 

o o  A. .% bp 
(b) 

FIGURE 5 Examples of graphs which are (a) star irreducible and (b) reducible. 
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66 1. R. McDONALD AND S. P. O’GORMAN 

Lemma I Let G be a set of topologically distinct, star irreducible graphs, and 
let H be the set consisting of all graphs in G and all possible star products of 
graphs in G .  Then 

{the sum of all graphs in H }  = exp{the sum of all graphs in G} - 1 (2.4) 

The proof is straight forward and has been given many times. In its present 
form the lemma is a combination of Lemmas 3 and 4 of Morita and H i r ~ i k e . ~  
The proof relies on the fact that the symmetry number of a graph F in H 
obtained as the star product of a graph rl taken n, times, a graph Tz taken 
n2 times, . . . , and a graph Ts taken n, times, where the Ti (i = 1,. . . , s) are 
graphs in G ,  is 

This is true only for star irreducible graphs. 
In practice the exponentiation theorem is usually applied in reverse, that 

is to say by taking the logarithm of a suitably chosen sum of graphs, thereby 
eliminating graphs which are reducible. For example, the z*-circle, f-bond 
expansion of the grand partition function (1.1) is given by 

E = 1 + {the sum of all topologically distinct, simple 
graphs consisting of one or more black 
z*-circles and f-bonds} (2.6) 

which begins in the manner shown in Figure 6(a). From the exponentiation 
theorem it follows immediately that 

log E = {the sum of all topologically distinct, simple, 
connected graphs consisting of black z*-circles 
and $bonds) (2.7) 

which starts as shown in Figure 6(b). Here the effect of taking the logarithm 
is to eliminate all graphs which are not connected; in a similar way the lemma 

0 

(a1 l + @ + .  . + - +  
0 0  

+ L, + A + ... 0 
+ 

e--. 

(b) o + H + L + A +  0 . 0  

FIGURE 6 The first few graphs in the z*-circle,f-bond expansion of (a) H and (b) log t. 
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FIGURE 7 An example of (a) a graph and (b) its I-irreducible maximal subgraphs. 

can be used to eliminate graphs with white articulation circles from a col- 
lection of singly-rooted graphs. 

2.5 Subgraphs and maximal subgraphs 

A subgraph of a graph by 
removal of circles, deletion of bonds and deletion of faces, or any combination 
of these operations. The union rl u r2 of two subgraphs of a graph r is the 
graph obtained by linking together and T2 in such a way that the circles, 
bonds and faces which are common to both are merged. The union of two 
subgraphs is itself a subgraph of I-. 

A subgraph is maximal with respect to a given property if it is not embedded 
in any other subgraph with the same property. Maximal subgraphs are not 
necessarily unique and “maximal” must not be interpreted in the sense of 
“largest ”. As a trivial example, the maximal connected subgraphs of a 
disconnected graph are simply the components of the graph, whereas the 
maximal connected subgraph of a connected graph is the graph itself and is 
consequently unique. 

Classes of maximal subgraphs which are of particular importance are 
those which are connected and either 1 -irreducible or 2-irreducible. Con- 
sider the graph shown in Figure 7(a). This has five maximal 1-irreducible 
subgraphs, which are pictured in 7(b). In general, if pi is the multiplicity of 
circle i (which is the same as the number of maximal 1-irreducible subgraphs 
in which i appears), and if there are n circles, the number n(1) of 1-irreducible 
subgraphs is given by the relation4 

is any graph which can be obtained from 

n - p + n(1) = 1 (2.8) 
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where p = c;= p i .  (Remember that a circle which is not an articulation 
circle has a multiplicity of one.) In the example illustrated in Figure 7 there 
are three articulation circles, with multiplicities of two, two and three. Thus 
p = 14, in agreement with (2.8). A similar but more complicated relation 
exists between the number of 2-irreducible subgraphs and the number of 
articulation pairs. Expressions of this type have been used by de Dominicis4 
to obtain relations between physically significant quantities. We shall discuss 
the work of de Dominicis again in Section 6.4. 

We now draw together a number of results having a bearing on the 
question of the uniqueness or otherwise of the maximal 1-irreducible and 
2-irreducible subgraphs of a given graph. These have a variety of important 
applications, as we shall see in the discussion of topological reduction in 
Section 6. 

Lemma I I . 1  Two maximal 1-irreducible subgraphs of a graph 
most one circle in common. 

Proof If rl and Tz are 1-irreducible subgraphs of with more than one 
circle in common, then rl u r2 is also 1-irreducible and neither rl nor r2 
can be maximal. If rl and r2 have only one circle in common, that circle is 
an articulation circle of rl u r2, and rl and r2 could each be maximal. 

Corollary If CT is a subset of the circles of r consisting of at least two ele- 
ments and if there exist 1-irreducible subgraphs of r which contain 0, then 
there is a unique maximal such subgraph. 

have at 

Lemma 11.2 If r is a graph with one white circle, and if the white circle is 
not an articulation circle, any maximal 1-irreducible subgraph which con- 
tains the white circle contains all the black circles adjacent to it. 

Proof (See Figure 8(a).) Let rl be a subgraph of r which is 1-irreducible 
and contains the white circle, x say; let y be a black circle which is adjacent to 
x but not in rl ; and let z be a black circle in rl. Since x is not an articulation 
circle, there exists a path connecting y and z which does not contain x. Let 
T2 be the subgraph consisting of the circles of that path, the bonds and faces 
linking adjacent circles in the path and any other circles incident with such 
faces. Then rl u r2 is a subgraph of l- which is 1-irreducible. Hence rl is not 
maximal. 

Corollary Let be a graph with one white circle such that the white circle 
is not an articulation circle. If there exist 1-irreducible subgraphs of r which 
contain the white circle, then there is a unique maximal such subgraph. 

Proof From the lemma it follows that any such maximal 1-irreducible sub- 
graph must contain not only the white circle but also all black circles ad- 
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8 Illustrating the proof of (a) Lemma 11.2 and (b) Lemma 11.4. The 
subgraphs and the dashed lines represent paths. 

curly lines 

jacent to it. Hence, by the corollary to Lemma 11.1, there exists exactly one 
such subgraph. 

Lemma 11.3 Maximal 2-irreducible subgraphs of a graph r have at most 
two circles in common. 

Proof As in Lemma 11.1. If two 2-irreducible subgraphs rl and r2 have 
exactly two circles in common, these circles form an articulation pair in 

Corolfary If (r is a subset of the circles of r consisting of at least three 
elements, and if there exist 2-irreducible subgraphs of r which contain (r, 

then there is a unique maximal such subgraph. 

rl u r2. 

Lemma 11.4 Let r be a 1-irreducible graph with two white circles. If the 
white circles are non-adjacent and do not form an articulation pair, and if 
there exist 2-irreducible subgraphs of r containing both white circles, then 
there is a unique maximal such subgraph. 

Proof (See Figure 8(b).) Let r contain two such maximal subgraphs, rl 
and r2 say. Clearly rl and T2 have only the white circles in common; other- 
wise, by Lemma 11.3, they are not maximal. Both rl and Tz must also con- 
tain one or more black circles, since the white circles are not linked by a bond. 
Note that a given circle of r is not a part of any maximal 2-irreducible sub- 
graph if, and only if, the removal of some pair of circles of that subgraph 
causes the circle in question to become disconnected from the subgraph. 
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70 1 .  R .  McDONALD AND S.  P. O’GORMAN 

Consider a black circle, x say, of rl. Since the white circles do  not form an 
articulation pair, x must be connected to the black circles of T2 by at least one 
path which does not contain a white circle. Clearly x is also connected to  the 
white circles by paths which lie entirely within rl. But there is no pair of 
circles in r2 the removal of which will disconnect x from T2. Thus T2 is not 
maximal and nor, by a similar argument, is TI. 

3 SYMMETRY NUMBERS, ORBITS A N D  STABILIZERS 

Let r be a simple graph having m black circles and an otherwise arbitrary 
structure. Then the graph group of r partitions the graph into t orbits of 
lengths n l ,  . . . , n,, with nj = m. An orbit is made up of the black circles 
associated with any set of labels which is mapped onto itself by every element 
of the graph group. In the example shown in Figure 1 there are three orbits: 
{ 1,2}, (3) and (4, 5 ,6} .  The stabilizer of any black circle of is the subset of 
all elements in the graph group which leave the label attached to that circle 
invariant. In the same example, the stabilizer of circle 1 (or 2) is the set of all 
permutations of the labels 4, 5 and 6, the stabilizer of 3 is the graph group 
itself, and so on. The stabilizer of any circle is a subgroup of the graph group 
and the stabilizers of all circles within a gwen orbit are isomorphic. From a 
fundamental result in the theory of permutation groups p. 56) it 
follows that 

{the order of the graph group} 
= {the order of the stabilizer of any black circle} 

x {the length of the orbit in which that circle appears} (3.1) 

The number of topologically distinct graphs which can be obtained by 
whitening a black circle of r is equal to the number of orbits. This result is 
implicit in the definition of an orbit. 

Whitening any of the black circles of the graph cannot lead to an increase 
in the symmetry number and will usually cause it to decrease. Let be a 
graph obtained from r by whitening one (any) black circle in orbit i. Then the 
graph group of Pi) is isomorphic to the stabilizer of any circle in orbit i of r. 
From (3.1) we see that the symmetry number of Pi) is 

Thus the symmetry number is reduced if orbit i contains more than one 
circle. 

The black circles of Pi) are similarly partitioned into orbits. If the length 01 
orbit i’ is ni.  and there are t’ orbits, then = ni. = (m - 1). Each orbit 01 
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GRAPH THEORY TECHNIQUES FOR FLUIDS 71 

P must lie within an orbit of r, but there may be no complete orbit which 
is common to both graphs. If FiSi')  is the graph obtained by whitening a 
black circle in orbit i' of r(i), the graph group of psi') is the stabilizer of one 
circle in orbit i' of Fi). Thus 

lr(iei')l = lFi)l/ni, = IrI/nini ,  (3.3) 
and 

~r(i~i'~i'')l = = l ~ - ( ~ ) l / ~ ~ , ~ ~ , ,  = ~ r l / ~ ~ ~ ~ , ~ ~ , ,  (3.4) 

where is a graph obtained by whitening a black circle in orbit i" (of 
length ni..) of Pi'). This procedure can be extended until all black circles 
except one have been whitened. 

The black circles in a given orbit of pi) must all be joined to the whitened 
circle by a bond of the same species, except when none are so joined. The set 
of topologically distinct graphs which can be obtained from rC0 by removing 
a bond incident with the white circle and whitening the circle at the other end 
is therefore given by 

{Pi) with a black circle in orbit i' whitened and the bond 
joining this circle to the original white circle removed, 
where i' ranges over all orbits in which the circles are 

It follows that the set of all topologically distinct graphs obtainable from 
by removing a bond, whitening the circles at each end and labelling them 1 
and 2 can be found by attaching the label 1 to the white circle of P, labelling 
the new white circle 2 and repeating the procedure for all orbits i of r, i.e. , 

{Pi) with its white circle labelled 1, a circle of orbit i' 
whitened and labelled 2 and the bond joining 1 and 2 
removed, where i ranges over all orbits and i' is subject 

Use of the prescription (3.6) ensures that graphs for which the two white 
circles originate in the same orbit of r are counted once, whereas graphs 
where the circles originate in different orbits are counted twice. This takes 
proper account of the fact that in graphs of the first type the order of the 
labelling of the white circles is irrelevant, but in the second case the inter- 
change of labels generates a graph which is topologically distinct from the 
original one. 

It is instructive to look finally at the way in which the orbits of a star 
product are related to those of its constituent graphs. Suppose that a star 
product, r say, is formed solely from star irreducible graphs taken from a set 

connected to the original white circles by a bond} (3.5) 

to the same restriction as in (3.5)} (3.6) 
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12 I. R. McDONALD AND S. P. O’GORMAN 

{ri}. If a particular black circle in Ti lies in an orbit of length ti, its orbit in r 
will be of length nit i ,  where n, is the number of times that Ti is taken in 
forming the star product. This is the origin of the factor ni! in Q. (2.5). If, on 
the other hand, some of the constituent graphs are reducible, the lengths of 
the orbits may increase by much larger factors, as in the simple example 
shown in Figure qb). Thus Eq. (2.5) gives only a lower bound on the sym- 
metry number of a star product formed from reducible graphs, with the 
result that the exponentiation theorem cannot be applied to such graphs. 

4 GRAPHICAL INTERPRETATION OF FUNCTIONAL 
DI FFER ENTI AT ION 

Let r be a simple graph composed of m black y-circles, B-bonds and C;,-faces. 
As before we shall use the symbol T to denote a labelled version of l- and as a 
specific example we shall consider the graph shown in Figure 1 with the 
white circle removed. The corresponding integral is a functional of y, B and 
t3  and we may properly speak of the functional derivatives of the integral 
with respect to y, B and tS. However, it is equally legitimate and more con- 
venient to speak of the functional derivatives of f, since the labelled graph 
and the integral are mathematically equivalent. 

4.1 

If 9 is a functional of a function f(r), and if 6 9  is the variation in 9 arising 
from a small variation 6f(r) in f(r), then the functional derivative 69/6f(r) 
is defined by the relation 

Differentiation with respect to a one-point function 

The functional 9 may be represented by a labelled graph, f say, with circles 
which are all black. Symbolically 

= ...  d l .  . .  dmQ(1, ..., m)y(l),.. ., y(m) (4.2) I I  
where Q(1, . . . , m) expresses the functional dependence on the functions 
associated with the bonds and faces of r. In the example quoted in the 
introduction to this section the function Q(1, . . . , m) is given explicitly by 
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GRAPH THEORY TECHNIQUES FOR FLUIDS 

Now consider a small variation in the function y. The corresponding variation 
in the value o f f  is given by 

73 

r r  m 

f + 6f = J...  J d I  . . .  dmQ(l , . .  . , m ) n  [ y ( i )  + 6 ~ ( i ) l  (4.4) 
i =  1 

Expansion of the product shows that to first order in 6 y  

d y ( k )  f + 6r = f + f I--. /dl . . .  dmQ(1, ..., m)- n y ( i )  (4.5) 
k = l  ~ ( k )  i = l  

Interchanging the labels 1 and k in the kth integral gives 

W l )  Sf = /-. . [dl . . . dmQ(k, 2, . . . , 1, . . . , m) - n y(i) (4.6) 
k =  1 ~ ( 1 )  i = l  

and comparison with (4.1) shows that 

sf - = 1 s. . . 1 6 2  . . . dmQ(k, 2, . . . , 1, . . . , m)y(2) . . . y(m) (4.7) 
b ( 1 )  k = l  

Each of the m integrals in (4.7) may be represented by a graph with (m - 1) 
labelled black circles and a white l-circle labelled 1. In other words 

-- - (the sum of all labelled graphs obtained by b r  
'fll) replacing one black y-circle of r by a white 

1-circle labelled 1 and labelling the remaining 
circles in any one way} (4.8) 

4.2 

The analogue of (4.1) for the case when the variation in F is brought about 
by a variation 6f(r, r') in a two-point function is 

Differentiation with respect to a two-point function 

Equation (4.9) serves as the definition of the functional derivative df/Sf(r, r'). 
However, there is now an added complication. In all cases of interest the 
functional 9 and the function fare symmetric with respect to the interchange 
of the variables r and r'; the functional derivative must therefore possess the 
same symmetry. 
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We first write the integral T in the form 

f = . . . dl . . . dmR(1, . . . , m) n' B(i, j )  J J  ( i .  j )  
(4.10) 

where the restricted product is taken over all unordered pairs (i, j )  drawn 
from the set { 1, . . . , m }  for which a B(i, j)-bond exists. The function R( 1, . . . , m)  
represents the structure of the graph apart from the B-bonds. In the example 
given earlier 

w,. . . ?  6) = Y( l )Y(2)Y(3)Y(4)Y(5)Y(6)~~( l ,  2, 3) (4.1 1) 

We now proceed as in Section 4.1. The equation corresponding to (4.5) is 

If in a particular integral we make the interchanges 1 - k and 2 o I ,  the 
value of the integral is unaltered. The same is also true if we make the inter- 
changes 1 o 1 and 2 o k. We may therefore rewrite (4.12) as 

(4.13) 

Since we assume that B(1,2) = B(2, 1) and 6B(1,2) = 6B(2, I), comparison 
with (4.9) shows that the functional derivative is given in properly syrn- 
metrized form by 

-- " - A c' 1. . . I d 2  . . . dm{R(k, I ,  . . . , 1, . . . , 2 ,  . . . , rn) 
B(l, 2, ( k . 1 )  

+ R(I, k ,  . . . , 2 , .  . . , 1 , .  . . , m ) }  n' B(i,j) (4.14) 
( L A  

The graphical representation of (4.14) is 

-- - +{the sum of all labelled graphs obtained in sf 
sB(l' 2, pairs by i )  removing a B-bond of r, replacing 

the black circles at each end by white 1-circles 
labelled 1 and 2 and labelling the remaining 
circles in any one way, and ii) taking the 
previous graph and interchanging labels 1 
and 2) (4.15) 
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4.3 

The general method of proceeding should now be clear. We therefore quote 
the result for {, without proof: 

Differentiation with respect to an s-point function 

= (l/s!){the sum of all labelled graphs obtained in groups of s! sf 
K(1, . . * , s) by i) removing an {,-face of r, replacing the black 

circles at each vertex by white 1-circles labelled 
1,. . . , s in a specific order and labelling the remaining 
circles in any one way, and ii) taking the previous 
graph and making all non-trivial permutations of the 
labels 1, . . . , s> (4.16) 

As before, the factor l/s! arises from the need to maintain the symmetry of 
the functional derivative. 

5 THREE LEMMAS ON FUNCTIONAL DIFFERENTIATION 

The results expressed by Eqs. (4.8), (4.15) and (4.16) are of interest insofar 
as they provide a straightforward interpretation of the process of functional 
differentiation with respect to a function of one or more variables. However, 
as we have already remarked, the power of the graphical method is largely 
related to the ease with which relations involving free graphs can be manipu- 
lated. The extension of (4.8), (4.15) and (4.16) to the case of free graphs 
requires the proper weighting of the topologically distinct graphs which 
arise when the lakls of the black circles are removed. This creates certain 
combinatorial problems which can be overcome with the help of the ideas 
introduced in Section 3. 

5.1 

Lemma 111 Let be a simple graph composed of black y-circles, bonds and 
faces. Then 

Differentiation with respect to a one-point function 

a- 
- = (the sum of all topologically distinct graphs 
6y(1) obtained by replacing one black y-circle of r by 

a white 1-circle labelled 1) (5.1) 

Proof By combining the definition (2.3) with the rule (4.8) and multiplying 
(4.8) through by y(1) we find that 

(5.2) 
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16 I .  R .  McDONALD AND S. P. O'GORMAN 

where m is the number of black circles of r and the graphs f,, , . . . , T,,,, are 
obtained from r by choosing each black circle in turn, whitening it, labelling 
it 1 and labelling the remaining circles in any way. Consider a particular 
labelled graph occurring in (5.2). If the whitened circle of this graph lies in 
orbit i of r, we know from (2.3) and (3.3) that the value of the graph is 

I p) I p i )  = I r I (5.3) 

where Pi) has the same meaning as in Section 3 and ni is the length of the 
orbit. Orbit i contributes ni terms to the sum in brackets on the right-hand 
side of (5.2), each term having the same value. Thus, multiplying (5.3) by ni, 
summing over the t orbits of and introducing the result into Eq. (5.2) we 
find that 

The lemma is now proved by dividing through by y(l), which is equivalent to 
replacing the white ycircle of each Pi) by a white 1-circle. 

Corollary If r is a graph composed of m black y-circles, bonds and faces 
then 

Proof Equation (5.4) can be rewritten as 

where pi) is a labelled version of Pi) and we have substituted for I Pi)l from 
(3.2). Integrating with respect to the coordinate 1 is equivalent to blackening 
the white circle labelled 1. But blackening the white circle of any F') yields 
a labelled version of r, T say, the value of which is simply I I- I r. Thus 
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5.2 

Lemma IV Let r be a simple graph composed of black circles, p B-bonds 
and faces. Then 

Differentiation with respect to a two-point function 

-- - +{the sum of all topologically distinct graphs 6r 
"(19 2, obtained by removing a B-bond of r, whitening the 

black circles at each end and labelling the 
whitened circles 1 and 2) (5.8) 

Proof From (2.3) and (4.15) we see, after multiplication by B(1,2), that 

where the graphs fB,, . . . , f B P  are obtained from r by choosing each bond 
in turn, whitening the black circles at each end, labelling the whitened circles 
1 and 2 and labelling the remaining circles in any one way. Consider a 
particular graph occurring in (5.9). If the circle labelled 1 in this graph is 
in orbit i of r and if the circle labelled 2 is in orbit i' of l-(i), then in the notation 
already used the value of this graph, from (2.3) and (3.3), is 

I l-0.i') 1 p i .  i ' )  = I r 1 r(i, i ' ) / n i n i ,  (5.10) 

where ni and nip are the lengths of the orbits in question. There are a total of 
nini,  such graphs in (5.9), so their total contribution is lrlpBi'). Summing 
over orbits we find that 

(5.11) 

where t is again the number of orbits in r and the sum on i' is restricted to 
orbits of in which the circles are connected to the white circle in orbit i 
by a B-bond. Division through by B(l, 2), which is equivalent to deleting 
the B(1,2) bond in each T'(isi ') ,  leads immediately to the result (5.8). 

Corollary If r is a simple graph composed of black circles, p B-bonds 
and faces then 

(5.12) 
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78 1. R. McDONALD AND S. P.  O'GORMAN 

Proof This proceeds as in the corollary to Lemma 111. By making use of 
(2.3) we see that eqn. (5.1 1) can be rewritten in the form 

where Fis i ' )  is a labelled version of Pi* "). Double integration of (5.13) with 
respect to 1 and 2 is equivalent to blackening the two white circles of pi* "), 

giving rise to a graph of value I I r. Integration therefore yields the result 

(5.14) 

But nini,  is simply the number of bonds linking circles in orbit i of r to those 
in orbit i' of I-'" and in forming the double sum in (5.13) each bond is counted 
twice. Thus 

(5.15) 

and the proof is complete. 

5.3 

Lemma V Let r be a simple graph composed of black circles, bonds and 
<,-faces. Then for any given s 

Differentiation with respect to  an s-point function 

= (l/s!) {the sum of all topologically distinct 
6r 

bt,(L . . . , s) graphs obtained by removing an <,-face 
of r, whitening the circles at the 
vertices of the face and labelling the 
whitened circles 1, , . . , s) (5.16) 

As the proof proceeds on almost identical lines to that of Lemma IV, we 
shall omit the details; we also omit the statement of the corollary analogous 
to (5.5) and (5.12), since this has not yet found any practical application. 

5.4 Some applications 

There exist many important examples of functional derivatives, including in 
particular those which yield the probability distribution functions of the 
system. For example, the n-particle densities ~("'(1, . . . , n) can be written 
as functional derivatives of the grand partition function in the form 

1 6"Z 
p'"'( 1, . . . , n) = " z*( 1). . . z*(n) - (5.17) 

I 6z*( 1) . . .6z*(n)  
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GRAPH THEORY TECHNIQUES FOR FLUIDS 79 

which for n = 1 simplifies to 

6 log z 
p y l )  = z*(1) ___ 

6z*( 1) 
(5.18) 

The relation (5.17) can be deduced directly from the basic definition of 
p@)( 1, . . . , n) in the grand canonical ensemble." The grand partition function 
is said to be a generating functional for the densities, by analogy with the 
generating functions of combinatorial analysis.29 In almost the same fashion, 
log B is the generating functional'. l 6  for the Ursell cluster functions 
U'"'(1, . . . , n): 

6" log s 
(5.19) z*(n) 62*( 1) . . .6z*(n) 

U'"'(1,. . . , n) = z*(l). . . 

The Ursell functions are related to the densities by the expression 

p'"'(1, . . . , n) = c [ n V ) ( l ,  . . . , s)] (5.20) 

where the sum is taken over all products of the U(') corresponding to distinct 
partitions of the set { 1, . . . , n}, and to the n-particle correlation functions 
h("'(1, . . . , n) by 

(5.21) U'"'(1, .. ., n) = h'"'(1, .. ., n)p(')(l). .. p"'(n), n 2 2 

(5.22) 

U'Z'(1,2) = p(Z'(1, 23 - p(l)(l)p'1)(2) (5.23) 

h'2'(1,2) = p'Z'(1, 2)/p'1)(1)p(')(2) - 1 

= g'Z'(1, 2) - 1 (5.24) 

where g(2)(1, 2) is the pair distribution function. 
Applying Lemma I11 to the expansion (2.7) we find from Eq. (5.18) that 

p(l)(l) = {the sum of all topologically distinct, simple, 
connected graphs consisting of one white 
z*-circle labelled 1, black z*-circles and 
f -bonds} (5.25) 

an expansion which begins as shown in Figure 9(a), and from (5.19) that 

V2)(1, 2) = {the sum of all topologically distinct, simple, 
connected graphs consisting of two white 
z*circles labelled 1 and 2, black z*-circles 
and fbonds} (5.26) 
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o 1 + - +  1 b, + A + Q  + ... 
1 1 1 

Ic) 0 1 2  o + - + [ o + o \ + A  1 2  

1 2  1 2  1 2  

+L+_t .A+. . .  
1 2  1 2  1 2  

FIGURE 9 
and (c) ~‘’’(1, 2). 

The first few graphs in the z*-circle,f-bond expansion of (a) p”’(1).  (b) U(’’(1, 2)  

which begins as shown in Figure 9(b). We can now derive the z*-circle, 
f-bond expansion of pf2)(1,2) by substituting the expansions (5.25) and 
(5.26) into Eq. (5.23). As an intermediate step we obtain the expansion of 
p(”( l)p(l)(2) as the sum of star products of graphs contributing separately 
to ~ “ ’ ( 1 )  and p(’)(2). This is a legitimate operation, since two such graphs 
have no factor in common. The final result can be expressed in the form 

p‘*)(l, 2) = {the sum of all topologically distinct, simple 
graphs consisting of two white z*circles 
labelled 1 and 2, black z*-circles andf-bonds, 
such that there is a path from each black 
circle to a white circle} (5.27) 

The graphs in (5.27) (the first few are shown in Figure 9(c)) occur in pairs, 
differing only in the presence or absence of an $bond between the white 
circles. Two such graphs can be combined to form a single graph in which 
two white circles are linked by an e-bond, where 41, 2) = 1 + f(1,2). 
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Now consider the effect of taking the functional derivative of log Z with 
respect to f(l,2). Applying Lemma IV to the expansion (2.7) we find that 

6 log z 
2 ~ = (the sum of all topologically distinct, simple 

'f(lY 2, graphs consisting of two white z*-circles 
labelled 1 and 2, black z*-circles and f-bonds, 
such that there is a path from each black circle 
to a white circle but the white circles are 
not adjacent} (5.28) 

But the graphs appearing in (5.28) are just the subset of graphs in (5.27) for 
which there is no f-bond between the white circles. Thus by multiplying 
through Eq. (5.28) by e(1, 2) we generate all the graphs appearing in (5.27), 
showing that 

' 

(5.29) 

We have therefore succeeded in expressing the pair density as a functional 
derivative of log Z with respect to the pair potential. 
. The graphs in the expansion (5.25) are of two types: those which are 

star irreducible and those in which the white circle is an articulation circle. 
The latter can all be written as star products of star irreducible graphs which 
appear at a lower order in the expansion and can therefore be eliminated 
by use of the exponentiation theorem. The expansion of the function h(')(l) 
defined by 

P ( 1 )  = log p ( 1 )  - log z*(l) (5.30) 

is therefore obtained by discarding the reducible graphs in (5.25) and 
replacing the white z*-circle by a white 1-circle. Use of the symbol h(')(l) 
for the function defined in Eq. (5.30) is justified by the fact that for any n 
we find that 

h(")(l, . . . , n) = {the sum of all topologically distinct, 
simple graphs consisting of n white 
1-circles labelled 1, . . . , n, black z*-circles 
and f-bonds, such that there are no white 
articulation circles} (5.31) 
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- + A + A + ... 
1 2  

(bl 

1 2  1 2  

FIGURE 10 The first few graphs in the --*-circle, f-bond expansion of (a) h"'(1) and (b) 
I .  2). The white circles are all I-circles. 

For n = 1 the absence of white articulation circles is equivalent to the state- 
ment, already proved, that the graphs are star irreducible. For n 2 2 the 
result is proved by substituting the expansions (5.25) and (5.31) into the 
right-hand side of Eq. (5.21); this yields the generalization of (5.26) to all n. 
The first few graphs in (5.31) for n = 1 and n = 2 are shown in Figure 10. 
Note in particular the simplicity of the expansion of h")(1,2) relative to 
that of ~ ' ~ ' ( 1 ,  2), Figure 9(c); it is for this reason that the theory is developed 
in terms of correlation functions rather than densities. 

The significance of the corollaries to Lemmas 111 and IV is that they allow 
the functional to be expressed as a linear combination of the graphs used 
to characterize another. For example, taking account of Eq. (2.7), the 
corollary to Lemma 111 applied to (5.18) shows that 

Jp(l)(l)dl = {the sum of all topologically distinct, 
simple, connected graphs consisting of 
black z*-circles and f-bonds, each weighted 
by the number of circles it contains) (5.32) 

The corollary to Lemma IV can be exploited in a similar fashion. 

6 TOPOLOGICAL REDUCTION 

We turn now to a different type of graph theoretic operation, that of 
topological r ed~c t ion .~  To gain some understanding of what is involved, 
consider the following problem. Suppose that 9 is a known functional 
of y(r) and B(r, r'), so that it can be written as a (possibly infinite) sum of 
graphs with y-circles and B-bonds. If y'(r) is a second known functional of 
y(r) and B(r, r'), it is possible, at least in principle, to transform the graphical 
prescription for .F in terms of y-circles to a different expression in terms of 
7'-circles by eliminating y(r) between the two functional relations. There 
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are two obvious reasons why such a transformation could be useful. First, 
the function y'(r) may be physically more meaningful or mathematically 
simpler to handle than y(r). Second, the transformation may lead to a 
reduction (hence the name) in either the total number of graphs which must 
be considered, or the number of graphs which appear at a given order in, say, 
an expansion parameter. In the same way one might wish to convert from 
a relation in terms of B(r, r') to a new expression involving a different two- 
point function. The process of topological reduction is in this case sometimes 
referred to as bond renormalization. The origin of the term is not difficult 
to find. The two-point functions in question invariably represent, in some 
sense, interactions between particles, so that bond renormalization can be 
regarded as a procedure for rewriting the quantities of interest in terms of a 
new, " renormalized " interaction. Bond renormalization plays a particularly 
important part in the graph theoretic formulation of many perturbation 
theories of fluids. We shall give examples of the use of topological reduction 
in Section 6.4, but we must first derive the basic lemmas3 which are needed 
in solving the formal elimination problem. 

6.1 Coloured and.decorated graphs 

Let be a simple connected graph consisting of n white y-circles, m black 
1-circles and p B-bonds, and let g = (gi(r)} be a (possibly infinite) set of 
distinct functions of one variable. Consider the colouring of T which results 
from associating a function drawn from g with each black circle of r'; the 
functions chosen need not all be different. If the black circles are labelled 
1, .  . . , rn in  some arbitrary way, the colouring of r is fully characterized by 
its connections and the ordered set a = {i l ,  . . . , i,,,}, where Sir is the function 
associated with the circle labelled k ;  we shall call this set the colouring set. 
Thus the coloured free graph may conveniently be denoted by the symbol 
T(g; a) and a labelled version by f(g; a). 

' 

Any permutation of the labels 1, . . . , m of T(g; a) will induce a permutation 
on the ordered set a. If this permutation is made on circles of the same colour, 
i.e. on circles associated with the same function, the resulting graph is char- 
acterized by the same colouring set and to that extent the permutation is a 
trivial one. However, the same permutation does not necessarily leave the 
connections of the graph unaltered. The graph group of a coloured graph 
is defined as the group of permutations which not only leave the connections 
unaltered but also induce only trivial permutations on the colouring set. 
With this modified definition of what constitutes the graph group, the 
previous definitions of topological equivalence, symmetry number and the 
value of a free graph can be taken over unaltered to the case of coloured 
graphs . 
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It is easy to see that the graph group of r@; a) is always a subgroup of 
the graph group of r, andthat the two groups will be the same only when the 
colouring set is such that each circle in any orbit of is given the same colour. 
Lagrange’s theorem tells us now (cf. Eq. (2.2)) that 

r@; a)l x {the number of elements in the graph group 
of r which when applied to r@; a) yield 
topologically inequivalent graphs} 

r@; o)l x {the number of distinct, non-trivial 
permutations induced on a by elements 
of the graph group of r} 

Thus the effect of colouring r is to reduce its symmetry number by a factor 
n(a). 

Let g’ be the set of all possible labelled colourings of r which are obtained 
by associating distinct ordered subsets of rn functions drawn from g with the 
black circles of a particular labelled version of r. No two graphs in g‘ are 
topologically equivalent, since the colouring sets are distinct. Furthermore, 
given a graph characterized by the particular colouring set (T, the n(a) - 1 
topologically (but not completely) inequivalent graphs which are also 
topologically (but not completely) inequivalent to the given one appear 
in g’ exactly once. All other graphs in g’ are completely inequivalent to the 
given one. Thus g‘ can be partitioned into subsets containing n(a) topo- 
logically inequivalent graphs, graphs in different subsets being completely 
inequivalent. By choosing one element from each subset of g’ and removing 
the labels from the black circles we obtain a further set, G say, made up of 
topologically distinct graphs. 

Now consider the set h = {hi} composed of topologically distinct, simple, 
connected graphs with one white y-circle labelled r, black y-circles and B- 
bonds, the integral associated with hi being the function g,(r) in g, i.e. hi = 
g R ) /  1 hi I .  Let each black circle of r have one of the elements in h attached to it 
in such a way that the white circle of the graph in h is superimposed on the 
black circle of r and then blackened. We speak of the graphs in h being 
hung on at the black circles of r, or that r is decorated with graphs drawn 
from h. It is also possible to visualize a reverse process whereby articulation 
pieces are detached from a graph containing one or more white circles, an 
articulation piece,being a subset of the black circles and bonds which 
connects with the remainder of the graph at an articulation circle. The effect 
of detaching all articulation pieces is to reduce the graph to a 1-irreducible 
subgraph which contains all the white circles. 
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The graph obtained by decorating can be characterized in the same 
manner as a colouring of r, that is to say by the distinct ordered set a 
{ i l ,  . . . , i,,,}, where hi, is the graph hung on at the circle labelled k in r. 
We shall denote this graph by the symbol T(h; a) and the set of all such 
graphs which are topologically distinct by H. Since the elements of h are in' 
one-to-one correspondence with the elements of g, there is also a one-to-one 
correspondence between the decorated graphs in H and the coloured graphs 
in G, but the symmetry number of a graph T(h; a) will always be greater 
than or equal to that of the corresponding graph r(g; a). 

These ideas can be more readily grasped by looking at a simple example. 
Let r be the graph (having a symmetry number of two) shown in Figure 
ll(a), and let the set h be composed of the three graphs pictured in Figure 
ll(b). Then the set g consists of three functions and the set g' contains nine 
elements, since there are nine distinct choices of the colouring set. There 
are three cases for which n(a) = 1 (when both circles in are coloured in the 
same way) and six for which n(a) = 2. Thus the set G contains only six 
graphs, three with a symmetry number of two and three with a symmetry 
number of one; the corresponding graphs in H, shown in Figure 11(c), 
have much higher symmetry numbers: 2, 2, 8, 2, 4 and 8. All graphs in H 
have two black articulation circles and by detaching the articulation pieces 
connected to these circles we recover, in every case, the graph r. 

Graphs can also be hung on at bonds. Let t = { t i }  be a set of topologically 
distinct, simple, connected graphs with two white y-circles labelled r and r', 
black y-circles and B-bonds. A decorated graph can now be built up from r 
by hanging on a graph drawn from t at each bond of r, that is to say by super- 
imposing the two white circles of the graph in t on the circles with which the 
bond is incident, blackening any circle which is black in r and erasing the 
bond. The procedure we describe is sometimes referred to as the replacement 
of bonds in r by graphs in t.  Once again we can visualize the reverse process 
of detaching articulation pieces from rooted graphs if we broaden the 
concept of an articulation piece to include any subset of the black circles 
and bonds which connects with the rest of the graph at any set of circles 
forming an articulation subset in the complete graph. When the articulation 
pieces are detached from all articulation pairs, the subgraph which remains 
contains all the white circles but is not necessarily connected. 

Let T be the set of all topologically distinct graphs which can be obtained 
by replacing bonds in r by graphs in t.  If s = {si(r, r')} is a set of distinct 
functions of two variables such that si(r, r') is the integral associated with 
the ith element in t, i.e. t i  = skr, r')/l t i  1, and if s' is the set of all topologically 
inequivalent labelled graphs which can be built up by associating a function 
sdr, r') with each bond of a labelled version of r, it is clear that the graphs in 
s' can be partitioned into subsets in the same manner as those in 9'. Then, 
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FIGURE I 1  
yields the set ( c )  

Decorating the black circles of the graphs shown in (a) with graphs in the set (b) 

by choosing one representative from each subset and removing the labels 
from the black circles, we obtain a set S of topologically distinct graphs which 
are in one-to-one correspondence with those in T. It should be easy for the 
reader to construct an example similar to that used to illustrate the process 
of decorating the black circles of a given graph. Note, however, that in general 
the graph r cannot be recovered simply by detaching articulation pieces 
at the articulation pairs of graphs in S,  since this necessarily causes the dis- 
appearance of any bond linking the two circles. 

The further generalization to the case of faces is straightforward. 
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6.2 

Lemma I4 Let r be the graph and let g, h and H be the sets introduced in 
Section 6.1. Then if X(r)  is the sum of all graphs in h and if each graph 
in H is uniquely decomposable into its constituent parts, then 

{the sum of all graphs in H} = {the graph obtained by 

Hanging on of graphs a t  circles 

associating the function Z ( r )  
with each black circle of r} (6.2) 

Proof The function X(r) is given by 

and the value of the graph r is 

where m is the number of black circles in r and n' ranges over all. pairs 
(k, I )  which are linked by a bond. Then we can rewrite the right-hand side 
of (6.2) either in the form 

where 1' ranges over all distinct choices of the colouring set 0, or as 

where c" is restricted to the sets a which generate completely inequivalent 
graphs. 

Since the graphs in H (the left-hand side of (6.2)) are all distinct and those 
in (6.6) are all completely inequivalent, they must be in one-to-one corre- 
spondence. As the integrals associated with corresponding graphs are clearly 
the same, it remains only to show that the corresponding coefficients are 
equal. This is a straightforward task. By construction, the graphs in H are 
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uniquely decomposable. Thus the graph group of a graph T(h; a) in H is the 
direct product of the graph group of the corresponding coloured graph 
r@; a) in G with the graph groups of hi,, . . . , hi,. The symmetry number of 
T(h;  a) is therefore given by 

I r(h; 0)I = Ir(g; all Ihi ,  I ’ . . I hi,,, I 
= I I I hi, I ‘ . I hi,,, I ln(a) (6.7) 

Thus the factor multiplying the associated integral on the left-hand side of 
(6.2) is n(a)l I I I hi, 1 . . . I him I, which is the same as that appearing in the 
corresponding term in (6.6). The lemma is therefore proved. 

The limitation that the graphs in H must be uniquely decomposable is an 
important one, since the product property of the graph groups is essential 
to the proof of the lemma. In simpler language the restriction means that 
knowing the structure of r and of the graphs in h it must be possible by 
inspection of any graph in H to recognize which graph in h has been hung 
on at each black circle of r. For the lemma to be applicable this clearly 
restricts the class of graphs which can be used to decorate a particular 
graph r, but there is never any difficulty when r is free of black articulation 
circles. The lemma can be cast in more general form, for example by including 
the case when itself is a coloured graph, but the simpler version given here is 
sufficient for most purposes. 

6.3 

Lemma VZI Let be the graph and let s, t and T be the sets introduced in 
Section6.1.Then if.F(r,r‘)is thesumofallgraphsin t,with .F(r,r’)=:Fr(r’,r), 
and if each graph in T is uniquely decomposable into its constituent parts, 
then 

Replacement of bonds by graphs 

{the sum of all graphs in T }  = (the graph obtained by 
associating the function 
Y(r, r’) with each bond of r} (6.8) 

Proof This is almost identical to the proof of Lemma VI. Given any labelled 
version of r, the bonds can be labelled in some way (it does not matter how) 
and also given a particular direction (again it does not matter how). Since 
there are p bonds, the result of this ordering is a list g l , .  . . , gP. A graph 
built up by replacing each bond of by a graph drawn from r can now be 
completely characterized by the ordered set 0 = { i l ,  . . . , i,}, where the 
i,th element in t is hung on at the jth bond in r, the circle labelled r being 
superimposed at the beginning of the bond and the circle labelled r‘ super- 
imposed at the end. We now proceed as in Lemma VI, the analogue of the 
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quantity n(o) being the factor by which the symmetry number of is reduced 
when the B-bonds are replaced by two-point functions drawn from the set s. 

Note that a given graph has two forms, depending on the order in which 
the labels are attached to the white circles. If the value of the graph changes 
when the labels r and r' are interchanged, both graphs must appear in the set 
T. This ensures the symmetry of the function F(r ,  r') with respect to inter- 
change of the variables. 

6.4 Some applications 

Lemmas VI and VII provide the tools we need in solving problems of the type 
discussed in the introduction to this section. For example, by Lemma VI, 
the sum of all graphs in Figure ll(c) can be represented by the single graph 
r of ll(a) with its black y-circles replaced by black Z(r)-circles. Thus the 
transformation of variables (y(r) + #(r)) is accompanied by a reduction 
in the total number of graphs. 

We must Iook now at some examples of more practical importance. 
Consider first the z*-circle, f-bond expansion of h(')( 1) given by Eq. (5.31), 
taken for n = 1. Each graph contains a 1-irreducible rooted subgraph, 
obtained by locating each black articulation circle and detaching the cor- 
responding articulation pieces. From Lemmas 11.1 and 11.2 it follows that 
each graph has a unique maximal such subgraph, rm say, consisting wholly 
or in part of the one white circle, the black circles adjacent to it, and the bonds 
linking these circles. It is then easy to see that the effect of decorating I?, with 
graphs drawn from the expansion (5.25) of p(')(l) in terms of z*-circles is to 
build up graphs in the expansion of h(')(l). For example, in Figure 12, we 
show (a) a particular choice of I-, and (b) the way this can be decorated with 
graphs drawn from (5.25) to yield, in (c), a subset of the graphs in (5.31). 
Since the graphs in h"'(1) can be uniquely decomposed to leave a maximal 
l-irreducible subgraph, it follows from Lemma VI that for any particular 
choice of r, 

{the sum of all graphs in P ( 1 )  with the same I-,} 
= {rm with its black z*circles replaced by black p'')-circles} (6.9) 

But the fact that the maximal subgraphs are unique also means that every 
graph in P ( l )  can be built up only from a specific r,. Thus by summing the 
left-hand side of (6.9) over all topologically distinct r, we generate each 
graph in h(')(l) exactly once. It follows that the expansion of h(')(l) in terms 
of p(')-circles is given solely by graphs which are free of black articulation 
circles. EssentiaIly the same argument can be pursued for arbitrary n, the 
relevant maximal subgraphs being those which contain all the white circles 
but no black articulation circles; these are unique by virtue of Lemma 11. I .  
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1 

(a) 

FIGURE 12 Decorating the black circles of the graph r, shown in (a) with graphs (b) in the 
z*-circle, ,/-bond expansion of p"'(1) yields in (c) a subset of graphs in the p"'-circle, /-bond 
expansion of h"'(1). 

The expansion (5.31) can therefore be recast in the form 

h(")(l, . . . , n) = {the sum of all topologically distinct, 
simple, 1-irreducible graphs consisting of 
n white 1-circles labelled 1, . . . , n, black 
p(')-circles and at least one f-bond} (6.10) 

We have therefore passed from an expansion in terms of z*-circles to another 
in tcrms of p('kircles, discarding in the process all graphs with bIack articula- 
tion circles. The uniqueness of the maximal subgraph is clearly crucial to 
the argument, underlining the importance of results such as those contained 
in Lemma 11. 

The corresponding reduction of the z*-circle expansion of log= given 
by Eq. (2.7) is a little more complicated. We shall follow the method of 
de Dominicis,4 since this provides further examples of the application of the 
lemmas both of this section and of Section 5. 

We first define a functional of p"' and f by the expression 

d = {the sum of all topologically distinct, simple, 
1 -irreducible graphs consisting of black p(')-circles 
and f-bonds} (6.1 1) 
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Let r be a graph appearing in (6.11). Now consider the effect of decorating 
r in all possible ways with graphs drawn from the expansion of p(')(l) in 
terms of z*-circles. From Lemma VI, applied in reverse, it follows that 

= {the sum of all topologically distinct, simple, 
connected graphs consisting of black z'circles 
and f-bonds, and which contain a maximal 
1-irreducible subgraph identical to r except 
that the p('kirc1es are replaced by z*-circles} (6.12) 

Each graph appearing in (6.12) is a graph in the expansion (2.7). Furthermore, 
by summing (6.12) over all possible choices of r, thereby obtaining the 
functional 8, we generate every graph appearing in (2.7), but each such graph 
may appear more than once. In fact 

d = {the sum of all graphs in (2.7), each weighted by 
the number of 1-irreducible subgraphs it contains} (6.13) 

We now take the functional derivative of (6.11) with respect to p(I)(l). 
From Lemma I11 it follows that the result is a sum of graphs with one white 
circle labelled 1, which by comparison with Eq. (6.10) is found to be identical 
to the p(')-circle, f-bond expansion of h(')(l). Thus 

(6.14) 

and, consequently, from the corollary to Lemma I11 

Jh(')(l)p(')(l)dl = {the sum of all graphs in (6.11), 
each weighted by the number of 
circles it contains} (6.15) 

But we already know that each graph in (6.11) is itself a sum of graphs in the 
expansion of log E. Thus the functional defined by (6.15) can be written 
as a linear combination of the graphs in (2.7), each graph being weighted by a 
coefficient obtained by summing over all maximal 1-irreducible subgraphs 
in the graph, the contribution from each subgraph being the number of 
circles which it contains. This is equivalent to summing over all circles 
in the graph, counting one for each maximal 1-irreducible subgraph in which 
it appears. In other words 

Jh(')(l)p(')(l)dl = {the sum of all graphs in (2.7), each 
weighted by its total multiplicity} (6.16) 
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the "total multiplicity" being the quantity p appearing in Eq. (2.8). From 
Eqs. (5.32), (6.13) and (6.16) we see finally that log E is given as a functional 
of p") and f by the expression 

log z = JP")(l)dl - Jh"'(l)p"'(l)dl + d (6.17) 

since by the rule (2.8) each graph in the expansion (2.7) appears exactly once 
in the combination on the right-hand side of (6.17) when the three quantities 
appearing there are treated as functionals of z+ and f. In the homogeneous 
case Eq. (6.17) becomes the usual virial expansion of the equation of state in 
powers of the density. 

We want finally to show how Lemma VII can be used in the process of 
bond renormalization. Consider the class of graphs defined by the pre- 
scription 

~ " ( 1 ,  . . . , n)  = {the sum of all topologically distinct, 
1-irreducible, simple graphs consisting of 
n white 1-circles labelled 1, . . . , n, black 
p(''-circles and f-bonds, such that there 
are no white articulation pairs and no two 
white circles are adjacent} (6.18) 

the graphical 

y(L2) = g'2'(1, 2)/41,2) (6.19) 

and the case n = 3 becomes of interest when, for example, we seek a graphical 
interpretation of the Kirkwood superposition approximation for the three- 
body distribution function.16 The expansions for n = 2 and n = 3 begin 
as shown in Figure 13. 

Consider first the case when n 2 3. The graphs contributing to ~ " ( 1 ,  . . . , n) 
are free of white articulation pairs, but may contain articulation pairs made 
up of one white and one black circle or of two black circles. However, for 
any graph in (6.18) (for n 2 3), a 2-irreducible graph can be constructed by 
proceeding as follows. First locate an articulation pair and detach the articu- 
lation piece connecting with the rest of the graph at these two circles; next 
insert a bond between the two circles in question, irrespective of whether such 
a bond is present in r itself; then repeat the operation until no articulation 
pairs remain. The result is a graph, Y, say, which is 2-irreducible and contains 
all the white circles. The fact that the construction of Y, may involve the 
creation of bonds not present in r means that r; is not, in general, a subgraph 
of I-. On the other hand, it is clear that r:, is a maximal 2-irreducible subgraph 
of a graph r' which differs from only by the insertion of a bond between 

The case n = 2 is particularly important, since it 
expansion of the function log y(l,2), where 
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(bl A + m + m + m  
1 2 3  1 2 3  1 2 3  1 2 3  

+ + + /yJ + ... 
1 2 3  1 2 3  1 2 3  

FIGURE 13 The first few graphs in the p“’-circle, ,/-bond expansion of (a) x 2 ( l ,  2) and (b) 
x3(l, 2, 3). The white circles are all I-circles. 

pairs of nonadjacent circles which form an articulation pair in r. (This means 
that the white circles remain non-adjacent.) Since T, contains at ieast three 
circles, it follows from Lemma 11.3 that it is a unique maximal such subgraph. 
In other words, the order in which articulation pieces are detached in con- 
structing r, is irrelevant. Any graph in (6.18) for n 2 3 can now be built up 
from a specific F, by the process of replacing its f-bonds by graphs drawn 
from the p(’)-circle, f-bond expansion of h(”(1, 2) (Eq. (6.10), taken for 
n = 2); remember that such graphs are free of articulation circles. The way 
in which this can be done in a simple case is illustrated in Figure 14. Lemma 
VII can be applied to each r,, and summing over all topologically distinct 
choices of F, gives the p(’)-circle, h(’)-bond expansion of ~ ~ ( 1 ,  . . . , n) for 
n 2 3 in the form 

~ ~ ( 1 , .  . . , n) = (the sum of all topologically distinct, 
2-irreducible, simple graphs consisting 
of n white circles labelled 1, . . . , n, black 
p(’)-circles and hf2)-bonds, such that no 
two white circles are adjacent} (6.20) 

We see that the elimination of f-bonds in favour of h(’)-bonds leads to the 
disappearance of articulation pairs of any colour. 

For n = 2 the situation is more complicated because in that case the 
procedure we have described for constructing r, does not yield a unique 
result for graphs containing nodal circles. One solution is to write x2(1, 2) 
as the sum 

~ 2 ( 1 , 2 )  = b(l,2) + d(l,2) (6.2 1 ) 

where d(l,2) (the “bridge” graphs) is the subset consisting of graphs which 
are free of nodal circles. Lemma 11.4 is now applicable and Lemma VII 
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m m  1 2 3  1 2 3  

FIGURE 14 Replacing the bonds of the graph r- shown in (a) with graphs (b) in the p‘”- 
circle,/-bond expansion of h‘”(1, 2) yields in (c) a subset of graphs in the p“)-cimle, h”)-bond 
expansion of x3(l ,  2, 3). 

can therefore be used in the topological reduction of all graphs in d(l,2), 
but different 

More detailed discussion of the topological reduction of the f-bond 
expansion of x2( 1,2) would lead us too far afield, and in any event the subject 
is treated thoroughly elsewhere. We therefore take our last examples of 
bond renormalization from the more recently developed field of perturbation 
theory. Let us suppose that the pair potential can be separated into two parts 
in the form 

0(1,2) = UO(L 2) + UI(L2) (6.22) 

where uo defines a reference system and u1 represents a perturbation which 
may, in some sense, be regarded as “weak.” Then the Mayer f-function can 
be written as 

f (1 ,2)  = fo(4 2) + c1 + fO(L2)l c cw, 2)3”/n! (6.23) 

must be used for b(l,2) (the “series” graphs). 

m 

n= 1 

where 4(1,2) = - ju l ( l ,  2) and 

fO(1, 2) = expC-Bvo(1, a1 - 1 (6.24) 
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GRAPH THEORY TECHNIQUES FOR FLUIDS 

is the f-function for the reference system. Then the pair correlation function 
of the reference system, h f ) ( l ,  2) say, is given as a functional of p( ’ )  and fo 
by Eq. (6.10) (taken for n = 2), with f-bonds replaced by fo-bonds. 

We now substitute the expansion (6.23) into Eq. (6.10) (again taken for 
n = 2) and obtain, for each graph in (6.10), an infinite set of graphs consisting 
of black p(’kircles, fo-bonds and @-bonds. (This amounts to applying 
Lemma VII in reverse.) The subset of graphs which contain only !,-bonds 
is equal to hio)( 1,2), so the pair correlation of the full system can be written as 

h@’( 1, 2) = hb”( 1, 2) + hy’( 1, 2) (6.25) 

95 

with 

hi2)(1, 2) = {the sum of all topologically distinct, 
1-irreducible, @-bond composite graphs 
consisting of two white lcircles labelled 
1 and 2, black p(’)-circles, fo-bonds and at 
least one @-bond} (6.26) 

where a @-bond composite graph is one in which each pair of circles is linked 
by an arbitrary number of @-bonds but at most one fo-bond. From the 

’ rule given in Section 2.3 we know that the symmetry number of the graphs 
in (6.26) must be increased by a factor n ! for each pair of circles joined by n 
@-bonds; this takes account of the factors l/n ! appearing in (6.23). 

An articulation pair in a graph containing reference system bonds is 
said to form a reference articulation pair if there is an articulation piece 
connected to the pair which consists solely of black circles and reference 
bonds. The graphs in (6.26) can be partitioned into subsets, each consisting 
of a) a graph r in which the white circles are not a reference articulation 
pair and b) all possible star products of r with one of the graphs in the 
expansion of hb2)(1, 2). The sum of all graphs in a given subset can therefore 
be represented by r with a [l + hbz)(l, 2)]-bond between its white circles. 
Thus we can eliminate graphs in (6.26) which contain white articulation 
pairs by writing 

hi2)(1, 2) = [l + hb2)(1, 2)] {the sum of all topologically 
distinct, 1-irreducible, @-bond composite graphs 
consisting of two white 1-circles labelled 
1 and 2, fo-bonds and at least one @-bond, 
such that the white circles are not linked 
by an fo-bond and do not form an articulation 
pair, and graphs containing one or more 
black circles have at least one @-bond 
incident with a black circle) (6.27) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



96 I .  R.  M c D O N A L D  A N D  S .  P. O'GORMAN 

Graphs defined by the expression in curly brackets in Eq. (6.27) are of two 
types: those consisting solely of two white circles linked by @-bonds, and 
those containing at least three circles. In every case, therefore, it is possible 
to construct a graph which is free of all reference articulation pairs but 
contains both white circles by proceeding in a manner analogous to the 
construction of r, in the topological reduction of graphs contributing to 
~ " ( 1 ,  . . . , n), that is to say by locating in turn all reference articulation pairs, 
detaching the appropriate articulation piece and inserting a reference bond 
between the two circles. Uniqueness of the resulting graph is guaranteed 
by a trivial generalization of Lemma 11.3, graphs with nodal circles posing 
no special problem. Lemma VII can therefore be applied in much the same 
way as before, with the result that the expression for the pair distribution 
function of the system of interest can be written in the form 

= gb2)(1, 2) { 1 + the sum of all topologically 
g'Z'(1, 2) = 1 + P ' ( 1 ,  2) 

distinct, 1-irreducible, #-bond composite 
graphs consisting of two white 1-circles 
labelled 1 and 2, ho-bonds and at least one 
@-bond, such that the white circles are 
not linked by an h,-bond, there are no 
reference articulation pairs, and graphs 
consisting of three or more circles have 
at least one @-bond incident with a black 
circle} (6.28) 

where we have exploited the relation between g'2) and h'2' given by Eq. (5.24). 
Equation (6.28) is exact and forms the basis of a variety of approximation 

schemes. To zeroth order in @ we find that g(')(1,2) = gh2)(l, 2), as is to be 
expected, and corrections to this result could be obtained by summing graphs 
containing increasingly large numbers of @-bonds. In practice, however, 
this is rarely the best way to proceed, and the graphs in (6.28) are generally 
ordered (and summed) according to schemes based on more detailed con- 
sideration of their topological structure. A particularly important role is 
played by the so-called chain graphs, i.e. the graphs in (6.28) which consist 
of two white circles linked by a single path of black circles, @-bonds and 
h,-bonds. In a homogeneous system, provided the perturbation is sufficiently 
weak, the sum of all such graphs, U(r) say, can be evaluated by Fourier 
transform techniques. The function -kBTU(r)  can be regarded as a re- 
normalized potential in the sense already discussed; in the limit ho(r) + 0 
it reduces to the bare potential q(r) .  By a further topological reduction the 
@-bonds in the graphs in (6.28) can be replaced by V-bonds, with the dis- 
appearance of all graphs containing articulation pairs which have articula- 
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tion pieces consisting of a chain of bonds and black circles. Once again the 
result is exact and can be used as a basis for approximations. It should now 
be clear that any bond renormalization is invariably accompanied by the 
disappearance of a certain class of articulation pairs, the classification being 
made on the basis of the topological character of the associated articulation 
pieces. 

As an alternative to the @bond expansion, the graphs in ht2) ( f ,  2) 
can be expressed in terms of f-bonds and Gf-bonds, where Sf(l,2) = 
f(1, 2) - fo(l, 2). Elimination (by topological reduction) of @-bonds in 
favour of yo Cif-bonds then yields a result from which the “blip-function ” 
theory of Andersen et aL3’ is easily derived. This is the standard method of 
treating the perturbation involved in “softening” a hard-core potential. 

CONCLUDING REMARKS 

For the reasons indicated in the introduction, our discussion of applications 
has been kept deliberately brief. Thus we have said nothing at all about the 
very successful “optimized cluster theory” of Andersen and Chandler,g 
we have made only brief reference to the blip-function theory, and we have 
mentioned only in passing a topic of considerable practical importance, 
namely the way 16.’’ in which graphs can be ordered (and hence, with luck, 
summed) according to different topological criteria. Nor have we said any- 
thing on the subject of many-body forces, but the manner in which these can 
be incorporated should be fairly clear, requiring for the most part a straight- 
forward generalization of earlier arguments to the case of non-linear graphs ; 
functional derivatives, for example, can be handled with the help of results 
such as that of Lemma V. All these questions are very well treated in one or 
other of the review articles already cited. 
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